homechevron_rightStudychevron_rightMathchevron_rightAlgebrachevron_rightlinear algebra

Inverse matrix calculator

This online calculator finds inverse matrix via adjugate matrix

The calculator below computes inverse matrix via Gauss-Jordan algorithm. Some theory and formulas can found under the calculator.

PLANETCALC, Inverse of a matrix

Inverse of a matrix

Digits after the decimal point: 2
Inverse of a matrix

The inverse of a square matrix A, sometimes called a reciprocal matrix, is a matrix A^{-1} such that
AA^{-1} = A^{-1}A = I

For manual calculation you can use adjugate matrix to compute matrix inverse like this:
A^{-1} = \frac{1}{\det A}\cdot C^*

Adjugate matrix is the transpose of the cofactor matrix of A.
{C}^{*}= \begin{pmatrix}  {A}_{11} & {A}_{21} & \cdots & {A}_{n1} \\ {A}_{12} & {A}_{22} & \cdots & {A}_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ {A}_{1n} & {A}_{2n} & \cdots & {A}_{nn} \\ \end{pmatrix}

Cofactor of a_{ij} of A is defined as
where M_{ij} is a minor of a_{ij}.

You can use this method relatively easy for small matrices, 2x2, 3x3, or, may be, 4x4. For bigger matrices it is easier to use Gauss-Jordan algorithm implemented by calculator.

URL copiée dans le presse-papiers
Creative Commons Attribution/Share-Alike License 3.0 (Unported) PLANETCALC, Inverse matrix calculator